OCR FP3 2010 June — Question 8

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2010
SessionJune
TopicGroups

8 A set of matrices \(M\) is defined by $$A = \left( \begin{array} { l l } 1 & 0
0 & 1 \end{array} \right) , \quad B = \left( \begin{array} { c c } \omega & 0
0 & \omega ^ { 2 } \end{array} \right) , \quad C = \left( \begin{array} { c c } \omega ^ { 2 } & 0
0 & \omega \end{array} \right) , \quad D = \left( \begin{array} { c c } 0 & 1
1 & 0 \end{array} \right) , \quad E = \left( \begin{array} { c c } 0 & \omega ^ { 2 }
\omega & 0 \end{array} \right) , \quad F = \left( \begin{array} { c c } 0 & \omega
\omega ^ { 2 } & 0 \end{array} \right) ,$$ where \(\omega\) and \(\omega ^ { 2 }\) are the complex cube roots of 1 . It is given that \(M\) is a group under matrix multiplication.
  1. Write down the elements of a subgroup of order 2.
  2. Explain why there is no element \(X\) of the group, other than \(A\), which satisfies the equation \(X ^ { 5 } = A\).
  3. By finding \(B E\) and \(E B\), verify the closure property for the pair of elements \(B\) and \(E\).
  4. Find the inverses of \(B\) and \(E\).
  5. Determine whether the group \(M\) is isomorphic to the group \(N\) which is defined as the set of numbers \(\{ 1,2,4,8,7,5 \}\) under multiplication modulo 9 . Justify your answer clearly.