OCR MEI C1 2010 January — Question 12 5 marks

Exam BoardOCR MEI
ModuleC1 (Core Mathematics 1)
Year2010
SessionJanuary
Marks5
TopicCurve Sketching
TypeQuadratic modelling problems

12 The curve with equation \(y = \frac { 1 } { 5 } x ( 10 - x )\) is used to model the arch of a bridge over a road, where \(x\) and \(y\) are distances in metres, with the origin as shown in Fig. 12.1. The \(x\)-axis represents the road surface. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{ede57eaa-2645-49df-aa09-68b6d5f35a9a-4_524_885_406_628} \captionsetup{labelformat=empty} \caption{Fig. 12.1}
\end{figure}
  1. State the value of \(x\) at A , where the arch meets the road.
  2. Using symmetry, or otherwise, state the value of \(x\) at the maximum point B of the graph. Hence find the height of the arch.
  3. Fig. 12.2 shows a lorry which is 4 m high and 3 m wide, with its cross-section modelled as a rectangle. Find the value of \(d\) when the lorry is in the centre of the road. Hence show that the lorry can pass through this arch. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{ede57eaa-2645-49df-aa09-68b6d5f35a9a-4_529_871_1489_678} \captionsetup{labelformat=empty} \caption{Fig. 12.2}
    \end{figure}
  4. Another lorry, also modelled as having a rectangular cross-section, has height 4.5 m and just touches the arch when it is in the centre of the road. Find the width of this lorry, giving your answer in surd form.
    [0pt] [5]