OCR MEI FP2 2009 June — Question 4

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2009
SessionJune
TopicHyperbolic functions

4
  1. Prove, from definitions involving exponentials, that $$\cosh 2 u = 2 \cosh ^ { 2 } u - 1$$
  2. Prove that \(\operatorname { arsinh } y = \ln \left( y + \sqrt { y ^ { 2 } + 1 } \right)\).
  3. Use the substitution \(x = 2 \sinh u\) to show that $$\int \sqrt { x ^ { 2 } + 4 } \mathrm {~d} x = 2 \operatorname { arsinh } \frac { 1 } { 2 } x + \frac { 1 } { 2 } x \sqrt { x ^ { 2 } + 4 } + c$$ where \(c\) is an arbitrary constant.
  4. By first expressing \(t ^ { 2 } + 2 t + 5\) in completed square form, show that $$\int _ { - 1 } ^ { 1 } \sqrt { t ^ { 2 } + 2 t + 5 } \mathrm {~d} t = 2 ( \ln ( 1 + \sqrt { 2 } ) + \sqrt { 2 } )$$ \section*{[Question 5 is printed overleaf.]}