OCR FP3 2013 June — Question 8

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2013
SessionJune
TopicComplex numbers 2

8
  1. Use de Moivre's theorem to show that \(\cos 5 \theta \equiv 16 \cos ^ { 5 } \theta - 20 \cos ^ { 3 } \theta + 5 \cos \theta\).
  2. Hence find the roots of \(16 x ^ { 4 } - 20 x ^ { 2 } + 5 = 0\) in the form \(\cos \alpha\) where \(0 \leqslant \alpha \leqslant \pi\).
  3. Hence find the exact value of \(\cos \frac { 1 } { 10 } \pi\).