OCR MEI FP2 2013 January — Question 4

Exam BoardOCR MEI
ModuleFP2 (Further Pure Mathematics 2)
Year2013
SessionJanuary
TopicHyperbolic functions

4
  1. Show that the curve with equation $$y = 3 \sinh x - 2 \cosh x$$ has no turning points.
    Show that the curve crosses the \(x\)-axis at \(x = \frac { 1 } { 2 } \ln 5\). Show that this is also the point at which the gradient of the curve has a stationary value.
  2. Sketch the curve.
  3. Express \(( 3 \sinh x - 2 \cosh x ) ^ { 2 }\) in terms of \(\sinh 2 x\) and \(\cosh 2 x\). Hence or otherwise, show that the volume of the solid of revolution formed by rotating the region bounded by the curve and the axes through \(360 ^ { \circ }\) about the \(x\)-axis is $$\pi \left( 3 - \frac { 5 } { 4 } \ln 5 \right) .$$ Option 2: Investigation of curves \section*{This question requires the use of a graphical calculator.}