| Exam Board | Edexcel |
| Module | F1 (Further Pure Mathematics 1) |
| Year | 2021 |
| Session | June |
| Topic | Proof by induction |
7. (a) Prove by induction that for \(n \in \mathbb { N }\)
$$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { n } { 6 } ( n + 1 ) ( 2 n + 1 )$$
(b) Hence show that
$$\sum _ { r = 1 } ^ { n } \left( r ^ { 2 } + 2 \right) = \frac { n } { 6 } \left( a n ^ { 2 } + b n + c \right)$$
where \(a , b\) and \(c\) are integers to be found.
(c) Using your answers to part (b), find the value of
$$\sum _ { r = 10 } ^ { 25 } \left( r ^ { 2 } + 2 \right)$$