| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2015 |
| Session | June |
| Topic | Vectors: Lines & Planes |
6.The lines \(L _ { 1 }\) and \(L _ { 2 }\) have vector equations
$$\begin{aligned}
& L _ { 1 } : \mathbf { r } = \left( \begin{array} { r }
1
10
- 3
\end{array} \right) + \lambda \left( \begin{array} { r }
2
- 5
4
\end{array} \right)
& L _ { 2 } : \mathbf { r } = \left( \begin{array} { r }
- 1
2
3
\end{array} \right) + \mu \left( \begin{array} { l }
1
2
2
\end{array} \right)
\end{aligned}$$
(a)Show that \(L _ { 1 }\) and \(L _ { 2 }\) are perpendicular.
(b)Show that \(L _ { 1 }\) and \(L _ { 2 }\) are skew lines.
The point \(A\) with position vector \(- \mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k }\) lies on \(L _ { 2 }\) and the point \(X\) lies on \(L _ { 1 }\) such that \(\overrightarrow { A X }\) is perpendicular to \(L _ { 1 }\)
(c)Find the position vector of \(X\) .
(d)Find \(| \overrightarrow { A X } |\)
The point \(B\)(distinct from \(A\) )also lies on \(L _ { 2 }\) and \(| \overrightarrow { B X } | = | \overrightarrow { A X } |\)
(e)Find the position vector of \(B\) .
(f)Find the cosine of angle \(A X B\) .