| Exam Board | Edexcel |
| Module | AEA (Advanced Extension Award) |
| Year | 2002 |
| Session | June |
| Topic | Proof |
7.A student was attempting to prove that \(x = \frac { 1 } { 2 }\) is the only real root of
$$x ^ { 3 } + \frac { 3 } { 4 } x - \frac { 1 } { 2 } = 0$$
The attempted solution was as follows.
$$\begin{array} { r l r }
& x ^ { 3 } + \frac { 3 } { 4 } x & = \frac { 1 } { 2 }
\therefore & x \left( x ^ { 2 } + \frac { 3 } { 4 } \right) & = \frac { 1 } { 2 }
\therefore & x & = \frac { 1 } { 2 }
\text { or } & x ^ { 2 } + \frac { 3 } { 4 } & = \frac { 1 } { 2 }
\text { i.e. } & x ^ { 2 } & = - \frac { 1 } { 4 } \quad \text { no solution }
\therefore & \text { only real root is } x & = \frac { 1 } { 2 }
\end{array}$$
(a)Explain clearly the error in the above attempt.
(b)Give a correct proof that \(x = \frac { 1 } { 2 }\) is the only real root of \(x ^ { 3 } + \frac { 3 } { 4 } x - \frac { 1 } { 2 } = 0\) .
The equation
$$x ^ { 3 } + \beta x - \alpha = 0$$
where \(\alpha , \beta\) are real,\(\alpha \neq 0\) ,has a real root at \(x = \alpha\) .
(c)Find and simplify an expression for \(\beta\) in terms of \(\alpha\) and prove that \(\alpha\) is the only real root provided \(| \alpha | < 2\) .
(6)
An examiner chooses a positive number \(\alpha\) so that \(\alpha\) is the only real root of equation(I) but the incorrect method used by the student produces 3 distinct real"roots".
(d)Find the range of possible values for \(\alpha\) .
Marks for style,clarity and presentation: 7