Find the values of the constants \(A , B , C\) and \(D\) such that
$$\frac { 2 x ^ { 3 } - 1 } { x ^ { 2 } ( 2 x - 1 ) } \equiv A + \frac { B } { x } + \frac { C } { x ^ { 2 } } + \frac { D } { 2 x - 1 }$$
Hence show that
$$\int _ { 1 } ^ { 2 } \frac { 2 x ^ { 3 } - 1 } { x ^ { 2 } ( 2 x - 1 ) } \mathrm { d } x = \frac { 3 } { 2 } + \frac { 1 } { 2 } \ln \left( \frac { 16 } { 27 } \right)$$