OCR MEI FP1 2005 June — Question 10

Exam BoardOCR MEI
ModuleFP1 (Further Pure Mathematics 1)
Year2005
SessionJune
TopicSequences and series, recurrence and convergence

10
  1. You are given that $$\frac { 2 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { r } - \frac { 2 } { r + 1 } + \frac { 1 } { r + 2 }$$ Use the method of differences to show that $$\sum _ { r = 1 } ^ { n } \frac { 2 } { r ( r + 1 ) ( r + 2 ) } = \frac { 1 } { 2 } - \frac { 1 } { ( n + 1 ) ( n + 2 ) }$$
  2. Hence find the sum of the infinite series $$\frac { 1 } { 1 \times 2 \times 3 } + \frac { 1 } { 2 \times 3 \times 4 } + \frac { 1 } { 3 \times 4 \times 5 } + \ldots$$