OCR MEI C4 — Question 8

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
TopicGeneralised Binomial Theorem
TypeProduct of separate expansions

8 Scientists predict the velocity ( \(v\) kilometres per minute) for the new "outer explorer" spacecraft over the first minute of its entry to the atmosphere of the planet Titan to be modelled by the equation: $$v = \frac { 5000 } { ( 1 + t ) ( 2 + t ) ^ { 2 } } , 0 \leq t \leq 1 \text { where } t \text { represents time in minutes. }$$
  1. Use a binomial expansion to expand \(( 1 + t ) ^ { - 1 }\) up to and including the term in \(t ^ { 2 }\).
  2. Use a binomial expansion to expand \(( 2 + t ) ^ { - 2 }\) up to and including the term in \(t ^ { 2 }\).
  3. Hence, or otherwise, show that \(v \approx 1250 \left( 1 - 2 t + \frac { 11 t ^ { 2 } } { 4 } \right)\).
  4. The displacement of the spacecraft can be found by calculating the area under the velocity time graph. Use the approximation found in part (iii) to estimate the displacement of the spacecraft over the first half minute.
  5. Write \(\frac { 1 } { ( 1 + t ) ( 2 + t ) ^ { 2 } }\) in partial fractions.
  6. The displacement of the spacecraft in the first \(T\) minutes is given by \(\int _ { 0 } ^ { T } v \mathrm {~d} t\) Calculate the exact value of the displacement of the spacecraft over the first half minute given by the model.
  7. On further investigation the scientists believe the original model may be valid for up to three minutes. Explain why the approximation in (iii) will be no longer be valid for this time interval.