6 P is a general point on the curve with parametric equations \(x = 2 t , y = \frac { 2 } { t }\). This is shown in Fig. 6. The tangent at P intersects the \(x\) - and \(y\)-axes at the points Q and R respectively.
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{8b807b2e-777b-4c9a-b3dd-890d21d33174-3_487_684_388_685}
\captionsetup{labelformat=empty}
\caption{Fig. 6}
\end{figure}
Show that the area of the triangle OQR , where O is the origin, is independent of \(t\).