OCR MEI C4 2010 June — Question 7

Exam BoardOCR MEI
ModuleC4 (Core Mathematics 4)
Year2010
SessionJune
TopicVectors: Lines & Planes

7 A straight pipeline AB passes through a mountain. With respect to axes \(\mathrm { O } x y z\), with \(\mathrm { O } x\) due East, \(\mathrm { O } y\) due North and \(\mathrm { O } z\) vertically upwards, A has coordinates \(( - 200,100,0 )\) and B has coordinates \(( 100,200,100 )\), where units are metres.
  1. Verify that \(\overrightarrow { \mathrm { AB } } = \left( \begin{array} { l } 300
    100
    100 \end{array} \right)\) and find the length of the pipeline.
  2. Write down a vector equation of the line AB , and calculate the angle it makes with the vertical. A thin flat layer of hard rock runs through the mountain. The equation of the plane containing this layer is \(x + 2 y + 3 z = 320\).
  3. Find the coordinates of the point where the pipeline meets the layer of rock.
  4. By calculating the angle between the line AB and the normal to the plane of the layer, find the angle at which the pipeline cuts through the layer.