Edexcel S1 2015 June — Question 2

Exam BoardEdexcel
ModuleS1 (Statistics 1)
Year2015
SessionJune
TopicLinear regression
TypeCalculate from summary statistics

2. Paul believes there is a relationship between the value and the floor size of a house. He takes a random sample of 20 houses and records the value, \(\pounds v\), and the floor size, \(s \mathrm {~m} ^ { 2 }\) The data were coded using \(x = \frac { s - 50 } { 10 }\) and \(y = \frac { v } { 100000 }\) and the following statistics obtained. $$\sum x = 441.5 , \quad \sum y = 59.8 , \quad \sum x ^ { 2 } = 11261.25 , \quad \sum y ^ { 2 } = 196.66 , \quad \sum x y = 1474.1$$
  1. Find the value of \(S _ { x y }\) and the value of \(S _ { x x }\)
  2. Find the equation of the least squares regression line of \(y\) on \(x\) in the form \(y = a + b x\) The least squares regression line of \(v\) on \(s\) is \(v = c + d s\)
  3. Show that \(d = 1020\) to 3 significant figures and find the value of \(c\)
  4. Estimate the value of a house of floor size \(130 \mathrm {~m} ^ { 2 }\)
  5. Interpret the value \(d\) Paul wants to increase the value of his house. He decides to add an extension to increase the floor size by \(31 \mathrm {~m} ^ { 2 }\)
  6. Estimate the increase in the value of Paul's house after adding the extension.