- In the Venn diagram below, \(A\) and \(B\) represent events and \(p , q , r\) and \(s\) are probabilities.
\includegraphics[max width=\textwidth, alt={}, center]{c316fa29-dedc-4890-bd82-31eb0bb819f9-12_400_789_347_639}
$$\mathrm { P } ( A ) = \frac { 7 } { 25 } \quad \mathrm { P } ( B ) = \frac { 1 } { 5 } \quad \mathrm { P } \left[ \left( A \cap B ^ { \prime } \right) \cup \left( A ^ { \prime } \cap B \right) \right] = \frac { 8 } { 25 }$$
- Use algebra to show that \(2 p + 2 q + 2 r = \frac { 4 } { 5 }\)
- Find the value of \(p\), the value of \(q\), the value of \(r\) and the value of \(s\)
(ii) Two events, \(C\) and \(D\), are such that
$$\mathrm { P } ( C ) = \frac { x } { x + 5 } \quad \mathrm { P } ( D ) = \frac { 5 } { x }$$
where \(x\) is a positive constant.
By considering \(\mathrm { P } ( C ) + \mathrm { P } ( D )\) show that \(C\) and \(D\) cannot be mutually exclusive.