Edexcel M3 2014 June — Question 4

Exam BoardEdexcel
ModuleM3 (Mechanics 3)
Year2014
SessionJune
TopicWork, energy and Power 2

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{e500e20b-9060-4c69-af13-fb97b9a86dfd-07_486_874_223_495} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} One end of a light elastic string, of natural length \(l\) and modulus of elasticity \(3 m g\), is fixed to a point \(A\) on a fixed plane inclined at an angle \(\alpha\) to the horizontal, where \(\sin \alpha = \frac { 3 } { 5 }\) A small ball of mass \(2 m\) is attached to the free end of the string. The ball is held at a point \(C\) on the plane, where \(C\) is below \(A\) and \(A C = l\) as shown in Figure 3. The string is parallel to a line of greatest slope of the plane. The ball is released from rest. In an initial model the plane is assumed to be smooth.
  1. Find the distance that the ball moves before first coming to instantaneous rest. In a refined model the plane is assumed to be rough. The coefficient of friction between the ball and the plane is \(\mu\). The ball first comes to instantaneous rest after moving a distance \(\frac { 2 } { 5 } l\).
  2. Find the value of \(\mu\).