Edexcel M3 2011 June — Question 3

Exam BoardEdexcel
ModuleM3 (Mechanics 3)
Year2011
SessionJune
TopicCentre of Mass 1

3. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{826ad8ff-6e5c-4224-88ba-e78b79d1bc21-04_542_469_219_735} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} A solid consists of a uniform solid right cylinder of height \(5 l\) and radius \(3 l\) joined to a uniform solid hemisphere of radius \(3 l\). The plane face of the hemisphere coincides with a circular end of the cylinder and has centre \(O\), as shown in Figure 2. The density of the hemisphere is twice the density of the cylinder.
  1. Find the distance of the centre of mass of the solid from \(O\).
    (5) \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{826ad8ff-6e5c-4224-88ba-e78b79d1bc21-04_618_807_1327_571} \captionsetup{labelformat=empty} \caption{Figure 3}
    \end{figure} The solid is now placed with its circular face on a plane inclined at an angle \(\theta ^ { \circ }\) to the horizontal, as shown in Figure 3. The plane is sufficiently rough to prevent the solid slipping. The solid is on the point of toppling.
  2. Find the value of \(\theta\).