Edexcel M3 2010 June — Question 4

Exam BoardEdexcel
ModuleM3 (Mechanics 3)
Year2010
SessionJune
TopicCentre of Mass 2

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{049ea68c-d15f-41f8-860e-0816d36a2748-07_431_604_260_667} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} A container is formed by removing a right circular solid cone of height \(4 l\) from a uniform solid right circular cylinder of height \(6 l\). The centre \(O\) of the plane face of the cone coincides with the centre of a plane face of the cylinder and the axis of the cone coincides with the axis of the cylinder, as shown in Figure 3. The cylinder has radius \(2 l\) and the base of the cone has radius \(l\).
  1. Find the distance of the centre of mass of the container from \(O\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{049ea68c-d15f-41f8-860e-0816d36a2748-07_460_588_1254_676} \captionsetup{labelformat=empty} \caption{Figure 4}
    \end{figure} The container is placed on a plane which is inclined at an angle \(\theta ^ { \circ }\) to the horizontal. The open face is uppermost, as shown in Figure 4. The plane is sufficiently rough to prevent the container from sliding. The container is on the point of toppling.
  2. Find the value of \(\theta\).