Edexcel M3 2008 June — Question 4

Exam BoardEdexcel
ModuleM3 (Mechanics 3)
Year2008
SessionJune
TopicCentre of Mass 1

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f07b8a65-ccb5-423f-96cc-b303bd05ad1f-07_454_614_239_662} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} A uniform solid hemisphere, of radius \(6 a\) and centre \(O\), has a solid hemisphere of radius \(2 a\), and centre \(O\), removed to form a bowl \(B\) as shown in Figure 3.
  1. Show that the centre of mass of \(B\) is \(\frac { 30 } { 13 } a\) from \(O\). \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{f07b8a65-ccb5-423f-96cc-b303bd05ad1f-07_735_614_1126_662} \captionsetup{labelformat=empty} \caption{Figure 4}
    \end{figure} The bowl \(B\) is fixed to a plane face of a uniform solid cylinder made from the same material as \(B\). The cylinder has radius \(2 a\) and height \(6 a\) and the combined solid \(S\) has an axis of symmetry which passes through \(O\), as shown in Figure 4.
  2. Show that the centre of mass of \(S\) is \(\frac { 201 } { 61 } a\) from \(O\). The plane surface of the cylindrical base of \(S\) is placed on a rough plane inclined at \(12 ^ { \circ }\) to the horizontal. The plane is sufficiently rough to prevent slipping.
  3. Determine whether or not \(S\) will topple. \section*{
    \includegraphics[max width=\textwidth, alt={}]{f07b8a65-ccb5-423f-96cc-b303bd05ad1f-08_56_366_251_178}
    }