Edexcel M3 2001 June — Question 1

Exam BoardEdexcel
ModuleM3 (Mechanics 3)
Year2001
SessionJune
TopicVariable Force

  1. A particle \(P\) moves along the \(x\)-axis in the positive direction. At time \(t\) seconds, the velocity of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and its acceleration is \(\frac { 1 } { 2 } \mathrm { e } ^ { - \frac { 1 } { 6 } t } \mathrm {~m} \mathrm {~s} ^ { - 2 }\). When \(t = 0\) the speed of \(P\) is \(10 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
    1. Express \(v\) in terms of \(t\).
    2. Find, to 3 significant figures, the speed of \(P\) when \(t = 3\).
    3. Find the limiting value of \(v\).
    \begin{figure}[h]
    \captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{c3026c4b-d499-4756-9e01-9b9929f2e04e-2_526_1186_1142_466}
    \end{figure} A smooth solid hemisphere, of radius 0.8 m and centre \(O\), is fixed with its plane face on a horizontal table. A particle of mass 0.5 kg is projected horizontally with speed \(u \mathrm {~m} \mathrm {~s} ^ { - 1 }\) from the highest point \(A\) of the hemisphere. The particle leaves the hemisphere at the point \(B\), which is a vertical distance of 0.2 m below the level of \(A\). The speed of the particle at \(B\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\) and the angle between \(O A\) and \(O B\) is \(\theta\), as shown in Fig. 1.
  2. Find the value of \(\cos \theta\).
  3. Show that \(v ^ { 2 } = 5.88\).
  4. Find the value of \(u\).