5. A car of mass \(m\) moves in a circular path of radius 75 m round a bend in a road. The maximum speed at which it can move without slipping sideways on the road is \(21 \mathrm {~m} \mathrm {~s} ^ { - 1 }\). Given that this section of the road is horizontal,
- show that the coefficient of friction between the car and the road is 0.6 .
The car comes to another bend in the road. The car's path now forms an arc of a horizontal circle of radius 44 m . The road is banked at an angle \(\alpha\) to the horizontal, where \(\tan \alpha = \frac { 3 } { 4 }\). The coefficient of friction between the car and the road is again 0.6. The car moves at its maximum speed without slipping sideways.
- Find, as a multiple of \(m g\), the normal reaction between the car and road as the car moves round this bend.
- Find the speed of the car as it goes round this bend.