OCR MEI C3 — Question 8

Exam BoardOCR MEI
ModuleC3 (Core Mathematics 3)
TopicProduct & Quotient Rules

8 You are given that \(\mathrm { f } ( x ) = \frac { x } { x ^ { 2 } + 1 }\) for all real values of \(x\).
  1. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 1 - x ^ { 2 } } { \left( x ^ { 2 } + 1 \right) ^ { 2 } }\).
  2. Hence show that there is a stationary value at \(\left( 1 , \frac { 1 } { 2 } \right)\) and find the coordinates of the other stationary point.
  3. The graph of the curve is shown in Fig. 8. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{2f403099-2813-40d8-a9ae-1f7e64d41f80-3_518_892_1612_705} \captionsetup{labelformat=empty} \caption{Fig. 8}
    \end{figure} State whether the curve is odd or even and prove the result algebraically.
  4. Show that \(\int _ { 1 } ^ { 4 } \frac { x } { x ^ { 2 } + 1 } \mathrm {~d} x = \int _ { a } ^ { b } k \frac { 1 } { u + 1 } \mathrm {~d} u\), where the values of \(a , b\) and \(k\) are to be determined.
  5. Hence find the area of the shaded region in Fig. 8.