OCR MEI C3 2006 June — Question 5

Exam BoardOCR MEI
ModuleC3 (Core Mathematics 3)
Year2006
SessionJune
TopicProof

5 Positive integers \(a , b\) and \(c\) are said to form a Pythagorean triple if \(a ^ { 2 } + b ^ { 2 } = c ^ { 2 }\).
  1. Given that \(t\) is an integer greater than 1 , show that \(2 t , t ^ { 2 } - 1\) and \(t ^ { 2 } + 1\) form a Pythagorean triple.
  2. The two smallest integers of a Pythagorean triple are 20 and 21. Find the third integer. Use this triple to show that not all Pythagorean triples can be expressed in the form \(2 t , t ^ { 2 } - 1\) and \(t ^ { 2 } + 1\).