Edexcel M3 2015 January — Question 7

Exam BoardEdexcel
ModuleM3 (Mechanics 3)
Year2015
SessionJanuary
TopicSimple Harmonic Motion

7. A particle \(P\) of mass \(m\) is attached to one end of a light elastic string, of natural length \(a\) and modulus of elasticity \(\lambda\). The other end of the string is attached to a fixed point \(A\) on a smooth plane which is inclined at \(30 ^ { \circ }\) to the horizontal. The string lies along a line of greatest slope of the plane. The particle rests in equilibrium at the point \(B\), where \(B\) is lower than \(A\) and \(A B = \frac { 6 } { 5 } a\).
  1. Show that \(\lambda = \frac { 5 } { 2 } m g\). The particle is now pulled down a line of greatest slope to the point \(C\), where \(B C = \frac { 1 } { 5 } a\), and released from rest.
  2. Show that \(P\) moves with simple harmonic motion of period \(2 \pi \sqrt { \frac { 2 a } { 5 g } }\)
  3. Find, in terms of \(g\), the greatest magnitude of the acceleration of \(P\) while the string is taut. The midpoint of \(B C\) is \(D\) and the string becomes slack for the first time at the point \(E\).
  4. Find, in terms of \(a\) and \(g\), the time taken by \(P\) to travel directly from \(D\) to \(E\).