Edexcel M3 2014 January — Question 5

Exam BoardEdexcel
ModuleM3 (Mechanics 3)
Year2014
SessionJanuary
TopicCentre of Mass 1

5. A solid \(S\) consists of a uniform solid hemisphere of radius \(r\) and a uniform solid circular cylinder of radius \(r\) and height \(3 r\). The circular face of the hemisphere is joined to one of the circular faces of the cylinder, so that the centres of the two faces coincide. The other circular face of the cylinder has centre \(O\). The mass per unit volume of the hemisphere is \(3 k\) and the mass per unit volume of the cylinder is \(k\).
  1. Show that the distance of the centre of mass of \(S\) from \(O\) is \(\frac { 9 r } { 4 }\) \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{2c0bb9ea-31a6-42f1-9e2e-d792eee8fd10-07_501_1082_653_422} \captionsetup{labelformat=empty} \caption{Figure 2}
    \end{figure} The solid \(S\) is held in equilibrium by a horizontal force of magnitude \(P\). The circular face of \(S\) has one point in contact with a fixed rough horizontal plane and is inclined at an angle \(\alpha\) to the horizontal. The force acts through the highest point of the circular face of \(S\) and in the vertical plane through the axis of the cylinder, as shown in Figure 2. The coefficient of friction between \(S\) and the plane is \(\mu\). Given that \(S\) is on the point of slipping along the plane in the same direction as \(P\),
  2. show that \(\mu = \frac { 1 } { 8 } ( 9 - 4 \cot \alpha )\).