Edexcel M2 2014 June — Question 4

Exam BoardEdexcel
ModuleM2 (Mechanics 2)
Year2014
SessionJune
TopicCentre of Mass 1

4. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{82cadc37-4cb0-455e-9531-e09ec0c19533-07_737_823_223_532} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} Figure 2 shows a lamina \(L\). It is formed by removing a square \(P Q R S\) from a uniform triangle \(A B C\). The triangle \(A B C\) is isosceles with \(A C = B C\) and \(A B = 12 \mathrm {~cm}\). The midpoint of \(A B\) is \(D\) and \(D C = 8 \mathrm {~cm}\). The vertices \(P\) and \(Q\) of the square lie on \(A B\) and \(P Q = 4 \mathrm {~cm}\). The centre of the square is \(O\). The centre of mass of \(L\) is at \(G\).
  1. Find the distance of \(G\) from \(A B\). When \(L\) is freely suspended from \(A\) and hangs in equilibrium, the line \(A B\) is inclined at \(25 ^ { \circ }\) to the vertical.
  2. Find the distance of \(O\) from \(D C\).