A car of mass 750 kg is moving up a straight road inclined at an angle \(\theta\) to the horizontal, where \(\sin \theta = \frac { 1 } { 15 }\). The resistance to motion of the car from non-gravitational forces has constant magnitude \(R\) newtons. The power developed by the car's engine is 15 kW and the car is moving at a constant speed of \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
Show that \(R = 260\).
The power developed by the car's engine is now increased to 18 kW . The magnitude of the resistance to motion from non-gravitational forces remains at 260 N . At the instant when the car is moving up the road at \(20 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) the car's acceleration is \(a \mathrm {~m} \mathrm {~s} ^ { - 2 }\).