6. A particle \(A\) of mass \(2 m\) is moving with speed \(2 u\) on a smooth horizontal table. The particle collides directly with a particle \(B\) of mass \(4 m\) moving with speed \(u\) in the same direction as \(A\). The coefficient of restitution between \(A\) and \(B\) is \(\frac { 1 } { 2 }\).
- Show that the speed of \(B\) after the collision is \(\frac { 3 } { 2 } u\).
- Find the speed of \(A\) after the collision.
Subsequently \(B\) collides directly with a particle \(C\) of mass \(m\) which is at rest on the table. The coefficient of restitution between \(B\) and \(C\) is \(e\). Given that there are no further collisions,
- find the range of possible values for \(e\).
(8)