5. A car of mass 1000 kg is towing a trailer of mass 1500 kg along a straight horizontal road. The tow-bar joining the car to the trailer is modelled as a light rod parallel to the road. The total resistance to motion of the car is modelled as having constant magnitude 750 N . The total resistance to motion of the trailer is modelled as of magnitude \(R\) newtons, where \(R\) is a constant. When the engine of the car is working at a rate of 50 kW , the car and the trailer travel at a constant speed of \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\).
- Show that \(R = 1250\).
When travelling at \(25 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) the driver of the car disengages the engine and applies the brakes. The brakes provide a constant braking force of magnitude 1500 N to the car. The resisting forces of magnitude 750 N and 1250 N are assumed to remain unchanged. Calculate
- the deceleration of the car while braking,
- the thrust in the tow-bar while braking,
- the work done, in kJ , by the braking force in bringing the car and the trailer to rest.
- Suggest how the modelling assumption that the resistances to motion are constant could be refined to be more realistic.