3. A particle \(P\) of mass 4 kg moves from point \(A\) to point \(B\) down a line of greatest slope of a fixed rough plane. The plane is inclined at \(40 ^ { \circ }\) to the horizontal and \(A B = 12 \mathrm {~m}\). The coefficient of friction between \(P\) and the plane is 0.5
- Find the work done against friction as \(P\) moves from \(A\) to \(B\).
Given that the speed of \(P\) at \(B\) is \(24 \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
- use the work-energy principle to find the speed of \(P\) at \(A\).