OCR MEI C2 — Question 1

Exam BoardOCR MEI
ModuleC2 (Core Mathematics 2)
TopicArithmetic Sequences and Series

1
  1. An arithmetic progression has first term \(A\) and common difference \(D\). The sum of its first two terms is 25 and the sum of its first four terms is 250 .
    (A) Find the values of \(A\) and \(D\).
    (B) Find the sum of the 21 st to 50 th terms inclusive of this sequence.
  2. A geometric progression has first term \(a\) and common ratio \(r\), with \(r \neq \pm 1\). The sum of its first two terms is 25 and the sum of its first four terms is 250 . Use the formula for the sum of a geometric progression to show that \(\frac { r ^ { 4 } - 1 } { r ^ { 2 } - 1 } = 10\) and hence or otherwise find algebraically the possible values of \(r\) and the corresponding values of \(a\).