OCR MEI C2 — Question 2

Exam BoardOCR MEI
ModuleC2 (Core Mathematics 2)
TopicAreas Between Curves

2 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f44e12ce-6725-4922-be03-902a01716980-1_766_1017_517_602} \captionsetup{labelformat=empty} \caption{Fig. 11}
\end{figure} Fig. 11 shows the curve \(y = x ^ { 3 } - 3 x ^ { 2 } - x + 3\).
  1. Use calculus to find \(\int _ { 1 } ^ { 3 } \left( x ^ { 3 } - 3 x ^ { 2 } - x + 3 \right) \mathrm { d } x\) and state what this represents.
  2. Find the \(x\)-coordinates of the turning points of the curve \(y = x ^ { 3 } - 3 x ^ { 2 } - x + 3\), giving your answers in surd form. Hence state the set of values of \(x\) for which \(y = x ^ { 3 } - 3 x ^ { 2 } - x + 3\) is a decreasing function.