OCR MEI C2 — Question 4

Exam BoardOCR MEI
ModuleC2 (Core Mathematics 2)
TopicSine and Cosine Rules

4
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{e97df57f-3b69-4bec-bc58-9730873dea53-4_765_757_203_764} \captionsetup{labelformat=empty} \caption{Fig. 11.1}
    \end{figure} A boat travels from P to Q and then to R . As shown in Fig. 11.1, Q is 10.6 km from P on a bearing of \(045 ^ { \circ }\). R is 9.2 km from P on a bearing of \(113 ^ { \circ }\), so that angle QPR is \(68 ^ { \circ }\). Calculate the distance and bearing of R from Q .
  2. Fig. 11.2 shows the cross-section, EBC, of the rudder of a boat. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{e97df57f-3b69-4bec-bc58-9730873dea53-4_527_1474_1452_404} \captionsetup{labelformat=empty} \caption{Fig. 11.2}
    \end{figure} BC is an arc of a circle with centre A and radius 80 cm . Angle \(\mathrm { CAB } = \frac { 2 \pi } { 3 }\) radians.
    EC is an arc of a circle with centre D and radius \(r \mathrm {~cm}\). Angle CDE is a right angle.
    1. Calculate the area of sector ABC .
    2. Show that \(r = 40 \sqrt { 3 }\) and calculate the area of triangle CDA.
    3. Hence calculate the area of cross-section of the rudder. \begin{figure}[h]
      \includegraphics[alt={},max width=\textwidth]{e97df57f-3b69-4bec-bc58-9730873dea53-5_695_1012_271_600} \captionsetup{labelformat=empty} \caption{Fig. 12}
      \end{figure} A water trough is a prism 2.5 m long. Fig. 12 shows the cross-section of the trough, with the depths in metres at 0.1 m intervals across the trough. The trough is full of water.
    4. Use the trapezium rule with 5 strips to calculate an estimate of the area of cross-section of the trough. Hence estimate the volume of water in the trough.
    5. A computer program models the curve of the base of the trough, with axes as shown and units in metres, using the equation \(y = 8 x ^ { 3 } - 3 x ^ { 2 } - 0.5 x - 0.15\), for \(0 \leqslant x \leqslant 0.5\). Calculate \(\int _ { 0 } ^ { 0.5 } \left( 8 x ^ { 3 } - 3 x ^ { 2 } - 0.5 x - 0.15 \right) \mathrm { d } x\) and state what this represents.
      Hence find the volume of water in the trough as given by this model.