OCR MEI C2 — Question 4

Exam BoardOCR MEI
ModuleC2 (Core Mathematics 2)
TopicDifferentiation Applications
TypeFind tangent line equation

4 Fig. 10 shows a sketch of the graph of \(y = 7 x - x ^ { 2 } - 6\). \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{12e190fc-437f-499d-9c27-da49a7546755-2_604_912_1100_638} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure}
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and hence find the equation of the tangent to the curve at the point on the curve where \(x = 2\). Show that this tangent crosses the \(x\)-axis where \(x = \frac { 2 } { 3 }\).
  2. Show that the curve crosses the \(x\)-axis where \(x = 1\) and find the \(x\)-coordinate of the other point of intersection of the curve with the \(x\)-axis.
  3. Find \(\int _ { 1 } ^ { 2 } \left( 7 x - x ^ { 2 } - 6 \right) \mathrm { d } x\). Hence find the area of the region bounded by the curve, the tangent and the \(x\)-axis, shown shaded on Fig. 10. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{12e190fc-437f-499d-9c27-da49a7546755-3_643_1034_267_549} \captionsetup{labelformat=empty} \caption{Fig. 11}
    \end{figure} The equation of the curve shown in Fig. 11 is \(y = x ^ { 3 } - 6 x + 2\).
  4. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
  5. Find, in exact form, the range of values of \(x\) for which \(x ^ { 3 } - 6 x + 2\) is a decreasing function.
  6. Find the equation of the tangent to the curve at the point \(( - 1,7 )\). Find also the coordinates of the point where this tangent crosses the curve again.
This paper (2 questions)
View full paper