OCR MEI M1 2013 January — Question 6

Exam BoardOCR MEI
ModuleM1 (Mechanics 1)
Year2013
SessionJanuary
TopicNon-constant acceleration

6 The speed of a 100 metre runner in \(\mathrm { ms } ^ { - 1 }\) is measured electronically every 4 seconds.
The measurements are plotted as points on the speed-time graph in Fig. 6. The vertical dotted line is drawn through the runner's finishing time. Fig. 6 also illustrates Model P in which the points are joined by straight lines. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{13f555cc-d506-48e5-a0e4-225cae4251dc-6_1025_1504_641_260} \captionsetup{labelformat=empty} \caption{Fig. 6}
\end{figure}
  1. Use Model P to estimate
    (A) the distance the runner has gone at the end of 12 seconds,
    (B) how long the runner took to complete 100 m . A mathematician proposes Model Q in which the runner's speed, \(v \mathrm {~ms} ^ { - 1 }\) at time \(t \mathrm {~s}\), is given by $$v = \frac { 5 } { 2 } t - \frac { 1 } { 8 } t ^ { 2 }$$
  2. Verify that Model Q gives the correct speed for \(t = 8\).
  3. Use Model Q to estimate the distance the runner has gone at the end of 12 seconds.
  4. The runner was timed at 11.35 seconds for the 100 m . Which model places the runner closer to the finishing line at this time?
  5. Find the greatest acceleration of the runner according to each model.