OCR MEI C2 2008 January — Question 10

Exam BoardOCR MEI
ModuleC2 (Core Mathematics 2)
Year2008
SessionJanuary
TopicDifferentiation Applications
TypeProve constraint relationship

10 \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{15872003-2e41-47e9-a5bd-34e533768f8a-3_501_493_1434_826} \captionsetup{labelformat=empty} \caption{Fig. 10}
\end{figure} Fig. 10 shows a solid cuboid with square base of side \(x \mathrm {~cm}\) and height \(h \mathrm {~cm}\). Its volume is \(120 \mathrm {~cm} ^ { 3 }\).
  1. Find \(h\) in terms of \(x\). Hence show that the surface area, \(A \mathrm {~cm} ^ { 2 }\), of the cuboid is given by \(A = 2 x ^ { 2 } + \frac { 480 } { x }\).
  2. Find \(\frac { \mathrm { d } A } { \mathrm {~d} x }\) and \(\frac { \mathrm { d } ^ { 2 } A } { \mathrm {~d} x ^ { 2 } }\).
  3. Hence find the value of \(x\) which gives the minimum surface area. Find also the value of the surface area in this case.