OCR MEI C2 2005 January — Question 11

Exam BoardOCR MEI
ModuleC2 (Core Mathematics 2)
Year2005
SessionJanuary
TopicExponential Functions

11 Answer part (iii) of this question on the insert provided.
A hot drink is made and left to cool. The table shows its temperature at ten-minute intervals after it is made.
Time (minutes)1020304050
Temperature \(\left( { } ^ { \circ } \mathrm { C } \right)\)6853423631
The room temperature is \(22 ^ { \circ } \mathrm { C }\). The difference between the temperature of the drink and room temperature at time \(t\) minutes is \(z ^ { \circ } \mathrm { C }\). The relationship between \(z\) and \(t\) is modelled by $$z = z _ { 0 } 10 ^ { - k t }$$ where \(z _ { 0 }\) and \(k\) are positive constants.
  1. Give a physical interpretation for the constant \(z _ { 0 }\).
  2. Show that \(\log _ { 10 } z = - k t + \log _ { 10 } z _ { 0 }\).
  3. On the insert, complete the table and draw the graph of \(\log _ { 10 } z\) against \(t\). Use your graph to estimate the values of \(k\) and \(z _ { 0 }\).
    Hence estimate the temperature of the drink 70 minutes after it is made.