OCR C2 2005 June — Question 5

Exam BoardOCR
ModuleC2 (Core Mathematics 2)
Year2005
SessionJune
TopicFactor & Remainder Theorem
TypeFind constants using remainder theorem

5 The cubic polynomial \(\mathrm { f } ( x )\) is given by $$f ( x ) = x ^ { 3 } + a x + b$$ where \(a\) and \(b\) are constants. It is given that ( \(x + 1\) ) is a factor of \(\mathrm { f } ( x )\) and that the remainder when \(\mathrm { f } ( x )\) is divided by \(( x - 3 )\) is 16 .
  1. Find the values of \(a\) and \(b\).
  2. Hence verify that \(\mathrm { f } ( 2 ) = 0\), and factorise \(\mathrm { f } ( x )\) completely.