OCR C2 2008 January — Question 9

Exam BoardOCR
ModuleC2 (Core Mathematics 2)
Year2008
SessionJanuary
TopicTrig Graphs & Exact Values

9
  1. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{2ae05b46-6c9f-4aaa-9cba-1116c0ec27d4-4_376_764_276_733} \captionsetup{labelformat=empty} \caption{Fig. 1}
    \end{figure} Fig. 1 shows the curve \(y = 2 \sin x\) for values of \(x\) such that \(- 180 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\). State the coordinates of the maximum and minimum points on this part of the curve.
  2. \begin{figure}[h]
    \includegraphics[alt={},max width=\textwidth]{2ae05b46-6c9f-4aaa-9cba-1116c0ec27d4-4_371_766_959_731} \captionsetup{labelformat=empty} \caption{Fig. 2}
    \end{figure} Fig. 2 shows the curve \(y = 2 \sin x\) and the line \(y = k\). The smallest positive solution of the equation \(2 \sin x = k\) is denoted by \(\alpha\). State, in terms of \(\alpha\), and in the range \(- 180 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\),
    (a) another solution of the equation \(2 \sin x = k\),
    (b) one solution of the equation \(2 \sin x = - k\).
  3. Find the \(x\)-coordinates of the points where the curve \(y = 2 \sin x\) intersects the curve \(y = 2 - 3 \cos ^ { 2 } x\), for values of \(x\) such that \(- 180 ^ { \circ } \leqslant x \leqslant 180 ^ { \circ }\).