CAIE P2 2023 November — Question 7

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2023
SessionNovember
TopicReciprocal Trig & Identities

7
  1. Prove that \(\sin 2 x ( \cot x + 3 \tan x ) \equiv 4 - 2 \cos 2 x\).
  2. Hence find the exact value of \(\cot \frac { 1 } { 12 } \pi + 3 \tan \frac { 1 } { 12 } \pi\).

  3. \includegraphics[max width=\textwidth, alt={}, center]{b104e2a7-06c8-4e2e-a4f9-5095ad56897a-13_796_789_278_708} The diagram shows the curve with equation \(y = 4 - 2 \cos 2 x\), for \(0 < x < 2 \pi\). At the point \(A\), the gradient of the curve is 4 . The point \(B\) is a minimum point. The \(x\)-coordinates of \(A\) and \(B\) are \(a\) and \(b\) respectively. Show that \(\int _ { a } ^ { b } ( 4 - 2 \cos 2 x ) \mathrm { d } x = 3 \pi + 1\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.