OCR S4 2012 June — Question 2

Exam BoardOCR
ModuleS4 (Statistics 4)
Year2012
SessionJune
TopicMoment generating functions
TypeDerive MGF from PDF

2 The continuous random variable \(X\) has probability density function given by $$f ( x ) = \begin{cases} 4 x e ^ { - 2 x } & x \geqslant 0
0 & \text { otherwise } \end{cases}$$
  1. Show that the moment generating function ( mgf ) of \(X\) is $$\frac { 4 } { ( 2 - t ) ^ { 2 } } , \text { where } | t | < 2$$
  2. Explain why the \(\operatorname { mgf }\) of \(- X\) is \(\frac { 4 } { ( 2 + t ) ^ { 2 } }\).
  3. Two random observations of \(X\) are denoted by \(X _ { 1 }\) and \(X _ { 2 }\). What is the \(\operatorname { mgf }\) of \(X _ { 1 } - X _ { 2 }\) ?