5 The continuous random variable \(X\) has (cumulative) distribution function given by
$$\mathrm { F } ( x ) = \begin{cases} 0 & x < 1 ,
\frac { 4 } { 3 } \left( 1 - \frac { 1 } { x ^ { 2 } } \right) & 1 \leqslant x \leqslant 2 ,
1 & x > 2 . \end{cases}$$
- Find the median value of \(X\).
- Find the (cumulative) distribution function of \(Y\), where \(Y = \frac { 1 } { X ^ { 2 } }\), and hence find the probability density function of \(Y\).
- Evaluate \(\mathrm { E } \left( 2 - \frac { 2 } { X ^ { 2 } } \right)\).