OCR S3 2012 January — Question 5

Exam BoardOCR
ModuleS3 (Statistics 3)
Year2012
SessionJanuary
TopicChi-squared distribution

5 A statistician suggested that the weekly sales \(X\) thousand litres at a petrol station could be modelled by the following probability density function. $$f ( x ) = \begin{cases} \frac { 1 } { 40 } ( 2 x + 3 ) & 0 \leqslant x < 5
0 & \text { otherwise } \end{cases}$$
  1. Show that, using this model, \(\mathrm { P } ( a \leqslant X < a + 1 ) = \frac { a + 2 } { 20 }\) for \(0 \leqslant a \leqslant 4\). Sales in 100 randomly chosen weeks gave the following grouped frequency table.
    \(x\)\(0 \leqslant x < 1\)\(1 \leqslant x < 2\)\(2 \leqslant x < 3\)\(3 \leqslant x < 4\)\(4 \leqslant x < 5\)
    Frequency1612183024
  2. Carry out a goodness of fit test at the \(10 \%\) significance level of whether \(\mathrm { f } ( x )\) fits the data.