5 A statistician suggested that the weekly sales \(X\) thousand litres at a petrol station could be modelled by the following probability density function.
$$f ( x ) = \begin{cases} \frac { 1 } { 40 } ( 2 x + 3 ) & 0 \leqslant x < 5
0 & \text { otherwise } \end{cases}$$
- Show that, using this model, \(\mathrm { P } ( a \leqslant X < a + 1 ) = \frac { a + 2 } { 20 }\) for \(0 \leqslant a \leqslant 4\).
Sales in 100 randomly chosen weeks gave the following grouped frequency table.
| \(x\) | \(0 \leqslant x < 1\) | \(1 \leqslant x < 2\) | \(2 \leqslant x < 3\) | \(3 \leqslant x < 4\) | \(4 \leqslant x < 5\) |
| Frequency | 16 | 12 | 18 | 30 | 24 |
- Carry out a goodness of fit test at the \(10 \%\) significance level of whether \(\mathrm { f } ( x )\) fits the data.