OCR MEI S2 2008 June — Question 3

Exam BoardOCR MEI
ModuleS2 (Statistics 2)
Year2008
SessionJune
TopicNormal Distribution
TypeDirect binomial from normal probability

3 A company has a fleet of identical vans. Company policy is to replace all of the tyres on a van as soon as any one of them is worn out. The random variable \(X\) represents the number of miles driven before the tyres on a van are replaced. \(X\) is Normally distributed with mean 27500 and standard deviation 4000.
  1. Find \(\mathrm { P } ( X > 25000 )\).
  2. 10 vans in the fleet are selected at random. Find the probability that the tyres on exactly 7 of them last for more than 25000 miles.
  3. The tyres of \(99 \%\) of vans last for more than \(k\) miles. Find the value of \(k\). A tyre supplier claims that a different type of tyre will have a greater mean lifetime. A random sample of 15 vans is fitted with these tyres. For each van, the number of miles driven before the tyres are replaced is recorded. A hypothesis test is carried out to investigate the claim. You may assume that these lifetimes are also Normally distributed with standard deviation 4000.
  4. Write down suitable null and alternative hypotheses for the test.
  5. For the 15 vans, it is found that the mean lifetime of the tyres is 28630 miles. Carry out the test at the \(5 \%\) level.