OCR MEI S2 2006 January — Question 1 5 marks

Exam BoardOCR MEI
ModuleS2 (Statistics 2)
Year2006
SessionJanuary
Marks5
TopicPoisson Distribution
TypeState conditions only

1 A roller-coaster ride has a safety system to detect faults on the track.
  1. State conditions for a Poisson distribution to be a suitable model for the number of faults occurring on a randomly selected day. Faults are detected at an average rate of 0.15 per day. You may assume that a Poisson distribution is a suitable model.
  2. Find the probability that on a randomly chosen day there are
    (A) no faults,
    (B) at least 2 faults.
  3. Find the probability that, in a randomly chosen period of 30 days, there are at most 3 faults. There is also a separate safety system to detect faults on the roller-coaster train itself. Faults are detected by this system at an average rate of 0.05 per day, independently of the faults detected on the track. You may assume that a Poisson distribution is also suitable for modelling the number of faults detected on the train.
  4. State the distribution of the total number of faults detected by the two systems in a period of 10 days. Find the probability that a total of 5 faults is detected in a period of 10 days.
    [0pt]
  5. The roller-coaster is operational for 200 days each year. Use a suitable approximating distribution to find the probability that a total of at least 50 faults is detected in 200 days. [5]