| Exam Board | OCR MEI |
| Module | C1 (Core Mathematics 1) |
| Year | 2008 |
| Session | January |
| Topic | Quadratic Functions |
11
- Write \(x ^ { 2 } - 5 x + 8\) in the form \(( x - a ) ^ { 2 } + b\) and hence show that \(x ^ { 2 } - 5 x + 8 > 0\) for all values of \(x\).
- Sketch the graph of \(y = x ^ { 2 } - 5 x + 8\), showing the coordinates of the turning point.
- Find the set of values of \(x\) for which \(x ^ { 2 } - 5 x + 8 > 14\).
- If \(\mathrm { f } ( x ) = x ^ { 2 } - 5 x + 8\), does the graph of \(y = \mathrm { f } ( x ) - 10\) cross the \(x\)-axis? Show how you decide.