| Exam Board | OCR |
| Module | C1 (Core Mathematics 1) |
| Year | 2006 |
| Session | June |
| Topic | Quadratic Functions |
6
- Solve the equation \(x ^ { 4 } - 10 x ^ { 2 } + 25 = 0\).
- Given that \(y = \frac { 2 } { 5 } x ^ { 5 } - \frac { 20 } { 3 } x ^ { 3 } + 50 x + 3\), find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\).
- Hence find the number of stationary points on the curve \(y = \frac { 2 } { 5 } x ^ { 5 } - \frac { 20 } { 3 } x ^ { 3 } + 50 x + 3\).
- Solve the simultaneous equations
$$y = x ^ { 2 } - 5 x + 4 , \quad y = x - 1$$
- State the number of points of intersection of the curve \(y = x ^ { 2 } - 5 x + 4\) and the line \(y = x - 1\).
- Find the value of \(c\) for which the line \(y = x + c\) is a tangent to the curve \(y = x ^ { 2 } - 5 x + 4\).