Solve the simultaneous equations
$$y = x ^ { 2 } - 3 x + 2 , \quad y = 3 x - 7 .$$
What can you deduce from the solution to part (i) about the graphs of \(y = x ^ { 2 } - 3 x + 2\) and \(y = 3 x - 7\) ?
Hence, or otherwise, find the equation of the normal to the curve \(y = x ^ { 2 } - 3 x + 2\) at the point ( 3,2 ), giving your answer in the form \(a x + b y + c = 0\) where \(a , b\) and \(c\) are integers.