1 Three points have coordinates \(\mathrm { A } ( - 3,12 , - 7 ) , \mathrm { B } ( - 2,6,9 ) , \mathrm { C } ( 6,0 , - 10 )\). The plane \(P\) passes through the points \(\mathrm { A } , \mathrm { B }\) and C .
- Find the vector product \(\overrightarrow { \mathrm { AB } } \times \overrightarrow { \mathrm { AC } }\). Hence or otherwise find an equation for the plane \(P\) in the form \(a x + b y + c z = d\).
The plane \(Q\) has equation \(6 x + 3 y + 2 z = 32\). The perpendicular from A to the plane \(Q\) meets \(Q\) at the point D. The planes \(P\) and \(Q\) intersect in the line \(L\).
- Find the distance AD .
- Find an equation for the line \(L\).
- Find the shortest distance from A to the line \(L\).
- Find the volume of the tetrahedron ABCD .