OCR FP3 2006 June — Question 8

Exam BoardOCR
ModuleFP3 (Further Pure Mathematics 3)
Year2006
SessionJune
TopicGroups

8 A group \(D\) of order 10 is generated by the elements \(a\) and \(r\), with the properties \(a ^ { 2 } = e , r ^ { 5 } = e\) and \(r ^ { 4 } a = a r\), where \(e\) is the identity. Part of the operation table is shown below.
\(e\)\(а\)\(r\)\(r ^ { 2 }\)\(r ^ { 3 }\)\(r ^ { 4 }\)ar\(a r ^ { 2 }\)\(a r ^ { 3 }\)\(a r ^ { 4 }\)
\(e\)\(e\)\(а\)\(r\)\(r ^ { 2 }\)\(r ^ { 3 }\)\(r ^ { 4 }\)ar\(a r ^ { 2 }\)\(a r ^ { 3 }\)\(a r ^ { 4 }\)
\(а\)\(а\)\(e\)ar\(a r ^ { 2 }\)\(a r ^ { 3 }\)\(a r ^ { 4 }\)
\(r\)r\(r ^ { 2 }\)\(r ^ { 3 }\)\(r ^ { 4 }\)\(e\)
\(r ^ { 2 }\)\(r ^ { 2 }\)\(r ^ { 3 }\)\(r ^ { 4 }\)\(e\)\(r\)
\(r ^ { 3 }\)\(r ^ { 3 }\)\(r ^ { 4 }\)\(e\)\(r\)\(r ^ { 2 }\)
\(r ^ { 4 }\)\(r ^ { 4 }\)ar\(e\)\(r\)\(r ^ { 2 }\)\(r ^ { 3 }\)
arar\(a r ^ { 2 }\)\(a r ^ { 3 }\)\(a r ^ { 4 }\)\(а\)
\(a r ^ { 2 }\)\(a r ^ { 2 }\)\(a r ^ { 3 }\)\(a r ^ { 4 }\)\(a\)arT
\(a r ^ { 3 }\)\(a r ^ { 3 }\)\(a r ^ { 4 }\)\(а\)ar\(a r ^ { 2 }\)
\(a r ^ { 4 }\)\(a r ^ { 4 }\)\(а\)ar\(a r ^ { 2 }\)\(a r ^ { 3 }\)
  1. Give a reason why \(D\) is not commutative.
  2. Write down the orders of any possible proper subgroups of \(D\).
  3. List the elements of a proper subgroup which contains
    (a) the element \(a\),
    (b) the element \(r\).
  4. Determine the order of each of the elements \(r ^ { 3 }\), \(a r\) and \(a r ^ { 2 }\).
  5. Copy and complete the section of the table marked \(\mathbf { E }\), showing the products of the elements \(a r , a r ^ { 2 } , a r ^ { 3 }\) and \(a r ^ { 4 }\).